ThreatARMOR Reduces Your Network’s Attack Surface

ThreatARMOR Reduces Your Network’s Attack Surface

2014 saw the creation of more than 317 million new pieces of malware. That means an average of nearly one million new threats were released each day.

Here at Ixia we’ve been collecting and organizing threat intelligence data for years to help test the industry’s top network security products. Our Application and Threat Intelligence (ATI) research center maintains one of the most comprehensive lists of malware, botnets, and network incursions for exactly this purpose. We’ve had many requests to leverage that data in support of enterprise security, and this week you are seeing the first product that uses ATI to boost the performance of existing security systems. Ixia’s ThreatARMOR continuously taps into the ATI research center’s list of bad IP sources around the world and blocks them.

Ixia’s ThreatARMOR represents another innovation and an extension for the company’s Visibility Architecture, reducing the ever-increasing size of their global network attack surface.

A network attack surface is the sum of every access avenue an individual can use to gain access to an enterprise network. The expanding enterprise security perimeter must address new classes of attack, advancing breeds of hackers, and an evolving regulatory landscape.

“What’s killing security is not technology, it’s operations,” stated Jon Oltsik, ESG senior principal analyst and the founder of the firm’s cybersecurity service. “Companies are looking for ways to reduce their overall operations requirements and need easy to use, high performance solutions, like ThreatARMOR, to help them do that.”

Spending on IT security is poised to grow tenfold in ten years. Enterprise security tools inspect all traffic, including traffic that shouldn’t be on the network in the first place: traffic from known malicious IPs, hijacked IPs, and unassigned or unused IP space/addresses. These devices, while needed, create a more work than a security team could possible handle. False security attack positives consume an inordinate amount of time and resources: enterprises spend approximately 21,000 hours per year on average dealing with false positive cyber security alerts per a Ponemon Institute report published January 2015. You need to reduce the attack surface in order to only focus on the traffic that needs to be inspected.

“ThreatARMOR delivers a new level of visibility and security by blocking unwanted traffic before many of these unnecessary security events are ever generated. And its protection is always up to date thanks to our Application and Threat Intelligence (ATI) program.” said Dennis Cox, Chief Product Officer at Ixia.

“The ATI program develops the threat intelligence for ThreatARMOR and a detailed ‘Rap Sheet’ that provides proof of malicious activity for all blocked IP addresses, supported with on-screen evidence of the activity such as malware distribution or phishing, including date of the most recent confirmation and screen shots.”

ThreatARMOR: your new front line of defense!

Additional Resources:

ThreatARMOR

Thanks to Ixia for the article.

The Network Design and Equipment Deployment Lifecycle

As we all know, technology has a life cycle of birth, early adoption, mainstream, and then obsoletion. Even the average consumer is very in touch with this lifecycle. However, within this overarching lifecycle there are “mini” lifecycles. One of these mini lifecycles that is particularly important to enterprises is the network design and equipment deployment lifecycle. This lifecycle is the basic roadmap of how equipment gets deployed within a company data network and key a topic of concern for IT personnel. While it’s its own lifecycle, it also aligns with the typical ITIL services of event management, incident management, IT operations management, and continual service improvement.

There are 5 primary stages to the network design and equipment deployment lifecycle: pre-deployment, installation and commissioning, assurance monitoring, troubleshooting, and decommissioning. I’ll disregard the decommissioning phase in this discussion as removing equipment is fairly straightforward. The other four phases are more interesting for the IT department.
The Network Design and Equipment Deployment LifecycleThe adjacent diagram shows a map of the four fundamental components within this lifecycle. The pre-deployment phase is typically concerned with lab verification of the equipment and/or point solution. During this phase, IT spends time and effort to ensure that the equipment/solution they are receiving will actually resolve the intended pain point.

During the installing and commissioning phase, the new equipment is installed, turned on, configured, connected to the network and validated to ensure that the equipment is functioning correctly. This is typically the least costly phase to find set-up problems. If those initial set-up problems are not caught and eliminated here, it is much harder and more costly to isolate those problems in the troubleshooting phase.

The assurance monitoring stage is the ongoing maintenance and administration phase. Equipment is monitored on an as-needed or routine basis (depending upon component criticality) to make sure that it’s functioning correctly. Just because alarms have not been triggered doesn’t mean the equipment is functioning optimally. Changes may have occurred in other equipment or the network that are propagating into other equipment downstream and causing problems. The assurance monitoring stage is often linked with proactive trend analysis, service level agreement validation, and quality of service inspections.

Troubleshooting is obviously the reactionary portion of the lifecycle devoted to fixing equipment and network problems so that the network can return to an optimized, steady state condition. Most IT personnel are extremely familiar with this stage as they battle equipment failures, security threats and network outages due to equipment problems and network programming changes.

Ixia understands this lifecycle well and it’s one of the reasons that it acquired Breaking Point and Anue Systems during 2012. We have capabilities to help the IT department in all four of the aspects of the network design and equipment deployment lifecycle. These tools and services are focused to directly attack key metrics for IT:

  • Decrease time-to-market for solutions to satisfy internal projects
  • Decrease mean-time-to-repair metrics
  • Decrease downtime metrics
  • Decrease security breach risks
  • Increase business competitiveness

The exact solution to achieve customer-desired results varies. Some simple examples include the following:

  • Using the NTO monitoring switch to give your monitoring tools the right information to gain the network visibility you need
  • Using the NTO simulator to test filtering and other changes before you deploy them on your network
  • Deploying the Ixia Storm product to assess your network security and also to simulate threats so that you can observe how your network will respond to security threats
  • Deploying various Ixia network testing tools (IxChariot, IxNetwork) to characterize the new equipment and network during the pre-deployment phase

Additional Resources:

Ixia Solutions

Network Monitoring

Related Products

Ixia Net Optics Network Taps Ixia Net Tool Optmizers
Ixia Network Tap
Ixia Net Optics network taps provide access for security and network management devices.
Net Tool Optimizers
Out-of-band traffic aggregation, filtering, dedup, load balancing

Thanks to Ixia for the article.

Don’t Be Lulled to Sleep with a Security Fable. . .

Don’t Be Lulled to Sleep with a Security Fable. . .Once upon a time, all you needed was a firewall to call yourself “secure.” But then, things changed. More networks are created every day, every network is visible to the others, and they connect with each other all the time—no matter how far away or how unrelated.

And malicious threats have taken notice . . .

As the Internet got bigger, anonymity got smaller. It’s impossible to go “unnoticed” on the Internet now. Everybody is a target.

Into today’s network landscape, every network is under the threat of attack all the time. In reaction to threats, the network “security perimeter” has expanded in reaction to new attacks, new breeds of hackers, more regions coming online, and emerging regulations.

Security innovation tracks threat innovation by creating more protection—but this comes with more complexity, more maintenance, and more to manage. Security investment rises with expanding requirements. Just a firewall doesn’t nearly cut it anymore.

Next-generation firewalls, IPS/IDS, antivirus software, SIEM, sandboxing, DPI: all of these tools have become part of the security perimeter in an effort to stop traffic from getting in (and out) of your network. And they are overloaded, and overloading your security teams.

In 2014, there were close to 42.8 million cyberattacks (roughly 117,339 attacks each day) in the United States alone. These days, the average North American enterprise fields around 10,000 alerts each day from its security systems—way more than their IT teams can possibly process—a Damballa analysis of traffic found.

Your network’s current attack surface is huge. It is the sum of every access avenue an attacker could use to enter your network (or take data out of your network). Basically, every connection to and/or from anywhere.

There are two types of traffic that hit every network: The traffic worth analyzing for threats, and the traffic not worth analyzing for threats that should be blocked immediately before any security resource is wasted inspecting or following up on it.

Any way to filter out traffic that is either known to be good or known to be bad, and doesn’t need to go through the security system screening, reduces the load on your security staff. With a reduced attack surface, your security resources can focus on a much tighter band of information, and not get distracted by non-threatening (or obviously threatening) noise.

Thanks to Ixia for the article.

The State of Enterprise Security Resilience – An Ixia Research Report

Ixia, an international leader in application performance and security resilience technology, conducted a survey to better understand how network security resilience solutions and techniques are used within the modern enterprise. While information exists on security products and threats, very little is available on how it is actually being used and the techniques and technology to ensure that security is completely integrated into the corporate network structure. This report presents the research we uncovered.

During this survey, there were three areas of emphasis exploring security and visibility architectures. One portion of the survey focused on understanding the product types and use. The second area of emphasis was on understanding the processes in use. The final area of emphasis was on understanding the people components of typical architectures.

This report features several key findings that include the following:

  • Many enterprises and carriers are still highly vulnerable to the effects of a security breach. This is due to concerns with lack of following best practices, process issues, lack of awareness, and lack of proper technology.
  • Lack of knowledge, not cost, is the primary barrier to security improvements. However, typical annual spend on network security is less than $100K worldwide.
  • Security resilience approaches are growing in worldwide adoption. A primary contributor is the merge of visibility and security architectures. Additional data shows that life-cycle security methodologies and security resilience testing are also positive contributors.
  • The top two main security concerns for IT are data loss and malware attacks.

These four key findings confirm that while there are still clear dangers to network security in the enterprise, there is some hope for improvement. The severity of the risk has not gone away, but it appears that some are managing it with the right combination of investment in technology, training, and processes.

To read more, download the report here.

The State of Enterprise Security Resilience - An Ixia Research Report

Thanks to Ixia for the article.

The Importance of State

Ixia recently added passive SSL decryption to the ATI Processor (ATIP). ATIP is an optional module in several of our Net Tool Optimizer (NTO) packet brokers that delivers application-level insight into your network with details such as application ID, user location, and handset and browser type. ATIP gives you this information via an intuitive real-time dashboard, filtered application forwarding, and rich NetFlow/IPFIX.

Adding SSL decryption to ATIP was a logical enhancement, given the increasing use of SSL for both enterprise applications and malware transfer – both things that you need to see in order to monitor and understand what’s going on. For security, especially, it made a lot of sense for us to decrypt traffic so that a security tool can focus on what it does best (such as malware detection).

When we were starting our work on this feature, we looked around at existing solutions in the market to understand how we could deliver something better. After working with both customers and our security partners, we realized we could offer added value by making our decrypted output easier to use.

Many of our security partners can either deploy their systems inline (traffic must pass through the security device, which can selectively drop packets) or out-of-band (the security device monitors a copy of the traffic and sends alerts on suspicious traffic). Their flexible ability to deploy in either topology means they’re built to handle fully stateful TCP connections, with full TCP handshake, sequence numbers, and checksums. In fact, many will flag an error if they see something that looks wrong. It turns out that many passive SSL solutions out there produce output that isn’t fully stateful and can flag errors or require disabling of certain checks.

What exactly does this mean? Well, a secure web connection starts with a 3-way TCP handshake (see this Wikipedia article for more details), typically on port 443, and both sides choose a random starting sequence (SEQ) number. This is followed by an additional TLS handshake that kicks off encryption for the application, exchanging encryption parameters. After the encryption is nailed up, the actual application starts and the client and server exchange application data.

When decrypting and forwarding the connection, some of the information from the original encrypted connection either doesn’t make sense or must be modified. Some information, of course, must be retained. For example, if the security device is expecting a full TCP connection, then it expects a full TCP handshake at the beginning of the connection – otherwise packets are just appearing out of nowhere, which is typically seen as a bad thing by security devices.

Next, in the original encrypted connection, there’s a TLS handshake that won’t make any sense at all if you’re reading a cleartext connection (note that ATIP does forward metadata about the original encryption, such as key length and cipher, in its NetFlow/IPFIX reporting). So when you forward the cleartext stream, the TLS handshake should be omitted. However, if you simply drop the TLS handshake packets from the stream, then the SEQ numbers (which keep count of transmitted packets from each side) must be adjusted to compensate for their omission. And every TCP packet includes a checksum that must also be recalculated around the new decrypted packet contents.

If you open up the decrypted output from ATIP, you can see all of this adjustment has taken place. Here’s a PCAP of an encrypted Netflix connection that has been decrypted by ATIP:

The Importance of State

You’ll see there are no out-of-sequence packets, and no indication of any dropped packets (from the TLS handshake) or invalid checksums. Also note that even though the encrypted connection was on port 443, this flow analysis shows a connection on port 80. Why? Because many analysis tools will expect encrypted traffic on port 443 and cleartext traffic on port 80. To make interoperability with these tools easier, ATIP lets you remap the cleartext output to the port of your choice (and a different output port for every encrypted input port). You might also note that Wireshark shows SEQ=0. That’s not the actual sequence number; Wireshark just displays a 0 for the first packet of any connection so you can use the displayed SEQ number to count packets.

The following ladder diagram might also help to make this clear:

The Importance of State

To make Ixia’s SSL decryption even more useful, we’ve also added a few other new features. In the 1.2.1 release, we added support for Diffie Helman keys (previously, we only supported RSA keys), as well as Elliptic Curve ciphers. We’ve also added reporting of key encryption metadata in our NetFlow/IPFIX reporting:

The Importance of State

As you can see, we’ve been busy working on our SSL solution, making sure we make it as useful, fast, and easy-to-use as possible. And there’s more great stuff on the way. So if you want to see new features, or want more information about our current products or features, just let us know and we’ll get on it.

More Information

ATI Processor Web Portal

Wikipedia Article: Transmission Control Protocol (TCP)

Wikipedia Article: Transport Layer Security (TLS)

Thanks to Ixia for the article.

Ixia Taps into Visibility, Access and Security in 4G/LTE

The Growing Impact of Social Networking Trends on Lawful Interception

Ixia Taps into Visibility, Access and Security in 4G/LTELawful Interception (LI) is the legal process by which a communications network operator or Service Provider (SP) gives authorized officials access to the communications of individuals or organizations. With security threats mushrooming in new directions, LI is more than ever a priority and major focus of Law Enforcement Agencies (LEAs). Regulations such as the Communications Assistance for Law Enforcement Act (CALEA), mandate that SPs place their resources at the service of these agencies to support surveillance and interdiction of individuals or groups.

CALEA makes Lawful Interception a priority mission for Service Providers as well as LEA; its requirements make unique demands and mandate specific equipment to carry out its high-stakes activities. This paper explores requirements and new solutions for Service Provider networks in performing Lawful Interception.

A Fast-Changing Environment Opens New Doors to Terrorism and Crime

In the past, Lawful Interception was simpler and more straightforward because it was confined to traditional voice traffic. Even in the earlier days of the Internet, it was still possible to intercept a target’s communication data fairly easily.

Now, as electronic communications take on new forms and broaden to a potential audience of billions, data volumes are soaring, and the array of service offerings is growing apace. Lawful Interception Agencies and Service Providers are racing to thwart terrorists and other criminals who have the technological expertise and determination to carry out their agendas and evade capture. This challenge will only intensify with the rising momentum of change in communication patterns.

Traffic patterns have changed: In the past it was easier to identify peer-to-peer applications or chat using well known port numbers. In order to evade LI systems, the bad guys had to work harder. Nowadays, most applications use Ixia Taps into Visibility, Access and Security in 4G/LTE standard HTTP and in most cases SSL to communicate. This puts an extra burden on LI systems that must identify overall more targets on larger volumes of data with fewer filtering options.

Social Networking in particular is pushing usage to exponential levels, and today’s lawbreakers have a growing range of sophisticated, encrypted communication channels to exploit. With the stakes so much higher, Service Providers need robust, innovative resources that can contend with a widening field of threats. This interception technology must be able to collect volume traffic and handle data at unprecedented high speeds and with pinpoint security and reliability.

LI Strategies and Goals May Vary, but Requirements Remain Consistent

Today, some countries are using nationwide interception systems while others only dictate policies that providers need to follow. While regulations and requirements vary from country to country, organizations such as the European Telecommunications Standards Institute (ETSI) and the American National Standards Institute (ANSI) have developed technical parameters for LI to facilitate the work of LEAs. The main functions of any LI solution are to access Interception-Related Information (IRI) and Content of Communication (CC) from the telecommunications network and to deliver that information in a standardized format via the handover interface to one or more monitoring centers of law enforcement agencies.

High-performance switching capabilities, such as those offered by the Ixia Director™ family of solutions, should map to following LI standards in order to be effective: They must be able to isolate suspicious voice, video, or data streams for an interception, based on IP address, MAC address or other parameters. The device must also be able to carry out filtering at wire speed. Requirements for supporting Lawful Interception activities include:

  • The ability to intercept all applicable communications of a certain target without gaps in coverage, including dropped packets, where missing encrypted characters may render a message unreadable or incomplete
  • Total visibility into network traffic at any point in the communication stream
  • Adequate processing speed to match network bandwidth
  • Undetectability, unobtrusiveness, and lack of performance degradation (a red flag to criminals and terrorists on alert for signs that they have been intercepted)
  • Real-time monitoring capabilities, because time is of the essence in preventing a crime or attack and in gathering evidence
  • The ability to provide intercepted information to the authorities in the agreed-upon handoff format
  • Load sharing and balancing of traffic that is handed to the LI system .

From the perspective of the network operator or Service Provider, the primary obligations and requirements for developing and deploying a lawful interception solution include:

  • Cost-effectiveness
  • Minimal impact on network infrastructure
  • Compatibility and compliance
  • Support for future technologies
  • Reliability and security

Ixia’s Comprehensive Range of Solutions for Lawful Interception

This Ixia customer, (the “Service Provider”), is a 4G/LTE pioneer that relies on Ixia solutions. Ixia serves the LI architecture by providing the access part of an LI solution in the form of Taps and switches. These contribute functional flexibility and can be configured as needed in many settings. Both the Ixia Director solution family and the iLink Agg™ solution can aggregate a group of links in traffic and pick out conversations with the same IP address pair from any of the links.

Following are further examples of Ixia products that can form a vital element of a successful LI initiative:

Test access ports, or Taps, are devices used by carriers and others to meet the capability requirements of CALEA legislation. Ixia is a global leader in the range and capabilities of its Taps, which provide permanent, passive access points to the physical stream.

Ixia Taps reside in both carrier and enterprise infrastructures to perform network monitoring and to improve both network security and efficiency. These inline devices provide permanent, passive access points to the physical stream. The passive characteristic of Taps means that network data is not affected whether the Tap is powered or not. As part of an LI solution, Taps have proven more useful than Span ports. If Law Enforcement Agencies must reconfigure a switch to send the right conversations to the Span port every time intercept is required, a risk arises of misconfiguring the switch and connections. Also, Span ports drop packets—another significant monitoring risk, particularly in encryption.

Director xStream™ and iLink Agg xStream™ enable deployment of an intelligent, flexible and efficient monitoring access platform for 10G networks. Director xStream’s unique TapFlow™ filtering technology enables LI to focus on select traffic of interest for each tool based on protocols, IP addresses, ports, and VLANs. The robust engineering of Director xStream and iLink Agg xStream enables a pool of 10G and 1G tools to be deployed across a large number of 10G network links, with remote, centralized control of exactly which traffic streams are directed to each tool. Ixia xStream solutions enable law enforcement entities to view more traffic with fewer monitoring tools as well as relieving oversubscribed 10G monitoring tools. In addition, law enforcement entities can share tools and data access among groups without contention and centralize data monitoring in a network operations center.

Director Pro™ and Director xStream Pro data monitoring switches offers law enforcement the ability to perform better pre-filtering via Deep Packet Inspection (DPI) and to hone in on a specific phone number or credit card number. Those products differs from other platforms that might have the ability to seek data within portions of the packet thanks to a unique ability to filter content or perform pattern matching with hardware and in wire speed potentially to Layer 7. Such DPI provides the ability to apply filters to a packet or multiple packets at any location, regardless of packet length or how “deep” the packet is; or to the location of the data to be matched within this packet. A DPI system is totally independent of the packet.

Thanks to Ixia for the article.

Improving Network Visibility – Part 4: Intelligent, Integrated, and Intuitive Management

In the three previous blogs in this series, I answered an often asked customer question – “What can really be done to improve network visibility?” – with discussions on data and packet conditioning, advanced filtering, and automated data center capability. In the fourth part of this blog series, I’ll reveal another set of features that can further improve network visibility and deliver even more verifiable benefits.

Too quickly summarize, this multi-part blog covers an in-depth view of various features that deliver true network visibility benefits. There are five fundamental feature sets that will be covered:

When combined, these capabilities can “supercharge” your network. This is because the five categories of monitoring functionality work together to create a coherent group of features that can, and will, lift the veil of complexity. These feature sets need to be integrated, yet modular, so you can deploy them to attack the complexity. This will allow you to deliver the right data to your monitoring and security tools and ultimately solve your business problems.

This fourth blog focuses on intelligent, integrated, and intuitive management of your network monitoring switches – also known as network packet brokers (NPB). Management of your equipment is a key concern. If you spend too much time on managing equipment, you lose productivity. If you don’t have the capability to properly manage all the equipment facets, then you probably won’t derive the full value from your equipment.

When it comes to network packet brokers, the management of these devices should align to your specific needs. If you purchase the right NPBs, the management for these devices will be intelligent, integrated, and intuitive.

So, what do we mean by intelligent, integrated, and intuitive? The following are the definitions I use to describe these terms and how they can control/minimize complexity within an element management system (EMS):

Intuitive – This is involves a visual display of information. Particularly, an easy to read GUI that shows you your system, ports, and tool connections at a glance so you don’t waste time or miss things located on a myriad of other views.

Integrated – Everyone wants the option of “One Stop Shopping.” For NPBs, this means no separate executables required for basic configuration. Best-of-breed approaches often sound good, but the reality of integrating lots of disparate equipment can become a nightmare. You’ll want a monitoring switch that has already been integrated by the manufacturer with lots of different technologies. This gives you the flexibility you want without the headaches.

Intelligent – A system that is intelligent can handle most of the nitpicky details, which are usually the ones that take the most effort and reduce productivity the most. Some examples include: the need for a powerful filtering engine behind the scenes to prevent overlap filtering and eliminate the need to create filtering tables, auto-discovery, ability to respond to commands from external systems, and the ability to initiate actions based upon user defined threshold limits.

At the same time, scalability is the top technology concern of IT for network management products, according to the EMA report Network Management 2012: Megatrends in Technology, Organization and Process published in February 2012. A key component of being able to scale is the management capability. Your equipment management capability will throttle how well your system scales or doesn’t.

The management solution for a monitoring switch should be flexible but powerful enough to allow for growth as your business grows – it should be consistently part of the solution and not the problem and must, therefore, support current and potential future needs. The element management system needs to allow for your system growth either natively or through configuration change. There are some basic tiered levels of functionality that are needed. I’ve attempted to summarize these below but more details are available in a whitepaper.

Basic management needs (these features are needed for almost all deployments)

  • Centralized console – Single pane of glass interface so you can see your network at a glance
  • The ability to quickly and easily create new filters
  • An intuitive interface to easily visualize existing filters and their attributes
  • Remote access capability
  • Secure access mechanisms

Small deployments – Point solutions of individual network elements (NEs) (1 to 3) within a system

  • Simple but powerful GUI with a drag and drop interface
  • The ability to create and apply individual filters
  • Full FCAPS (fault, configuration, accounting, performance, security) capability from a single interface

Clustered solutions – Larger solutions for campuses or distributed environments with 4 to 6 NEs within a system

  • These systems need an EMS that can look at multiple monitoring switches from a single GUI
  • More points to control also requires minimal management and transmission overhead to reduce clutter on the network
  • Ability to create filter templates and libraries
  • Ability to apply filter templates to multiple NE’s

Large systems – Require an EMS for large scale NE control

  • Need an ability for bulk management of NE’s
  • Require a web-based (API) interface to existing NMS
  • Need the ability to apply a single template to multiple NE’s
  • Need role-based permissions (that offer the ability to set and forget filter attributes, lock down ports and configuration settings, “internal” multi-tenancy, security for “sensitive” applications like CALEA, and user directory integration – RADIUS, TACACS+, LDAP, Active Directory)
  • Usually need integration capabilities for reporting and trend analysis

Integrated solutions – Very large systems will require integration to an external NMS either directly or through EMS

  • Need Web-based interface (API) for integration to existing NMS and orchestration systems
  • Need standardized protocols that allow external access to monitoring switch information (SYSLOG, SNMP)
  • Require role-based permissions (as mentioned above)
  • Requires support for automation capabilities to allow integration to data center and central office automation initiatives
  • Must support integration capabilities for business Intelligence collection, trend analysis, and reporting

Statistics should be available within the NPB, as well as through the element management system, to provide business intelligence information. This information can be used for instantaneous information or captured for trend analysis. Most enterprises typically perform some trending analysis of the data network. This analysis would eventually lead to a filter deployment plan and then also a filter library that could be exported as a filter-only configuration file loadable through an EMS on other NPBs for routine diagnostic assessments.

More information on the Ixia Net Tool Optimizer (NTO) monitoring switch and advanced packet filtering is available on the Ixia website. In addition, we have the following resources available:

Additional Resources:

Ixia Net Tool Optimizer (NTO)

White Paper: Building Scalability into Visibility Management

Ixia Visibility Solutions

Thanks to Ixia for the article.