The Network Design and Equipment Deployment Lifecycle

As we all know, technology has a life cycle of birth, early adoption, mainstream, and then obsoletion. Even the average consumer is very in touch with this lifecycle. However, within this overarching lifecycle there are “mini” lifecycles. One of these mini lifecycles that is particularly important to enterprises is the network design and equipment deployment lifecycle. This lifecycle is the basic roadmap of how equipment gets deployed within a company data network and key a topic of concern for IT personnel. While it’s its own lifecycle, it also aligns with the typical ITIL services of event management, incident management, IT operations management, and continual service improvement.

There are 5 primary stages to the network design and equipment deployment lifecycle: pre-deployment, installation and commissioning, assurance monitoring, troubleshooting, and decommissioning. I’ll disregard the decommissioning phase in this discussion as removing equipment is fairly straightforward. The other four phases are more interesting for the IT department.
The Network Design and Equipment Deployment LifecycleThe adjacent diagram shows a map of the four fundamental components within this lifecycle. The pre-deployment phase is typically concerned with lab verification of the equipment and/or point solution. During this phase, IT spends time and effort to ensure that the equipment/solution they are receiving will actually resolve the intended pain point.

During the installing and commissioning phase, the new equipment is installed, turned on, configured, connected to the network and validated to ensure that the equipment is functioning correctly. This is typically the least costly phase to find set-up problems. If those initial set-up problems are not caught and eliminated here, it is much harder and more costly to isolate those problems in the troubleshooting phase.

The assurance monitoring stage is the ongoing maintenance and administration phase. Equipment is monitored on an as-needed or routine basis (depending upon component criticality) to make sure that it’s functioning correctly. Just because alarms have not been triggered doesn’t mean the equipment is functioning optimally. Changes may have occurred in other equipment or the network that are propagating into other equipment downstream and causing problems. The assurance monitoring stage is often linked with proactive trend analysis, service level agreement validation, and quality of service inspections.

Troubleshooting is obviously the reactionary portion of the lifecycle devoted to fixing equipment and network problems so that the network can return to an optimized, steady state condition. Most IT personnel are extremely familiar with this stage as they battle equipment failures, security threats and network outages due to equipment problems and network programming changes.

Ixia understands this lifecycle well and it’s one of the reasons that it acquired Breaking Point and Anue Systems during 2012. We have capabilities to help the IT department in all four of the aspects of the network design and equipment deployment lifecycle. These tools and services are focused to directly attack key metrics for IT:

  • Decrease time-to-market for solutions to satisfy internal projects
  • Decrease mean-time-to-repair metrics
  • Decrease downtime metrics
  • Decrease security breach risks
  • Increase business competitiveness

The exact solution to achieve customer-desired results varies. Some simple examples include the following:

  • Using the NTO monitoring switch to give your monitoring tools the right information to gain the network visibility you need
  • Using the NTO simulator to test filtering and other changes before you deploy them on your network
  • Deploying the Ixia Storm product to assess your network security and also to simulate threats so that you can observe how your network will respond to security threats
  • Deploying various Ixia network testing tools (IxChariot, IxNetwork) to characterize the new equipment and network during the pre-deployment phase

Additional Resources:

Ixia Solutions

Network Monitoring

Related Products

Ixia Net Optics Network Taps Ixia Net Tool Optmizers
Ixia Network Tap
Ixia Net Optics network taps provide access for security and network management devices.
Net Tool Optimizers
Out-of-band traffic aggregation, filtering, dedup, load balancing

Thanks to Ixia for the article.

Don’t Be Lulled to Sleep with a Security Fable. . .

Don’t Be Lulled to Sleep with a Security Fable. . .Once upon a time, all you needed was a firewall to call yourself “secure.” But then, things changed. More networks are created every day, every network is visible to the others, and they connect with each other all the time—no matter how far away or how unrelated.

And malicious threats have taken notice . . .

As the Internet got bigger, anonymity got smaller. It’s impossible to go “unnoticed” on the Internet now. Everybody is a target.

Into today’s network landscape, every network is under the threat of attack all the time. In reaction to threats, the network “security perimeter” has expanded in reaction to new attacks, new breeds of hackers, more regions coming online, and emerging regulations.

Security innovation tracks threat innovation by creating more protection—but this comes with more complexity, more maintenance, and more to manage. Security investment rises with expanding requirements. Just a firewall doesn’t nearly cut it anymore.

Next-generation firewalls, IPS/IDS, antivirus software, SIEM, sandboxing, DPI: all of these tools have become part of the security perimeter in an effort to stop traffic from getting in (and out) of your network. And they are overloaded, and overloading your security teams.

In 2014, there were close to 42.8 million cyberattacks (roughly 117,339 attacks each day) in the United States alone. These days, the average North American enterprise fields around 10,000 alerts each day from its security systems—way more than their IT teams can possibly process—a Damballa analysis of traffic found.

Your network’s current attack surface is huge. It is the sum of every access avenue an attacker could use to enter your network (or take data out of your network). Basically, every connection to and/or from anywhere.

There are two types of traffic that hit every network: The traffic worth analyzing for threats, and the traffic not worth analyzing for threats that should be blocked immediately before any security resource is wasted inspecting or following up on it.

Any way to filter out traffic that is either known to be good or known to be bad, and doesn’t need to go through the security system screening, reduces the load on your security staff. With a reduced attack surface, your security resources can focus on a much tighter band of information, and not get distracted by non-threatening (or obviously threatening) noise.

Thanks to Ixia for the article.

The State of Enterprise Security Resilience – An Ixia Research Report

Ixia, an international leader in application performance and security resilience technology, conducted a survey to better understand how network security resilience solutions and techniques are used within the modern enterprise. While information exists on security products and threats, very little is available on how it is actually being used and the techniques and technology to ensure that security is completely integrated into the corporate network structure. This report presents the research we uncovered.

During this survey, there were three areas of emphasis exploring security and visibility architectures. One portion of the survey focused on understanding the product types and use. The second area of emphasis was on understanding the processes in use. The final area of emphasis was on understanding the people components of typical architectures.

This report features several key findings that include the following:

  • Many enterprises and carriers are still highly vulnerable to the effects of a security breach. This is due to concerns with lack of following best practices, process issues, lack of awareness, and lack of proper technology.
  • Lack of knowledge, not cost, is the primary barrier to security improvements. However, typical annual spend on network security is less than $100K worldwide.
  • Security resilience approaches are growing in worldwide adoption. A primary contributor is the merge of visibility and security architectures. Additional data shows that life-cycle security methodologies and security resilience testing are also positive contributors.
  • The top two main security concerns for IT are data loss and malware attacks.

These four key findings confirm that while there are still clear dangers to network security in the enterprise, there is some hope for improvement. The severity of the risk has not gone away, but it appears that some are managing it with the right combination of investment in technology, training, and processes.

To read more, download the report here.

The State of Enterprise Security Resilience - An Ixia Research Report

Thanks to Ixia for the article.

The Importance of State

Ixia recently added passive SSL decryption to the ATI Processor (ATIP). ATIP is an optional module in several of our Net Tool Optimizer (NTO) packet brokers that delivers application-level insight into your network with details such as application ID, user location, and handset and browser type. ATIP gives you this information via an intuitive real-time dashboard, filtered application forwarding, and rich NetFlow/IPFIX.

Adding SSL decryption to ATIP was a logical enhancement, given the increasing use of SSL for both enterprise applications and malware transfer – both things that you need to see in order to monitor and understand what’s going on. For security, especially, it made a lot of sense for us to decrypt traffic so that a security tool can focus on what it does best (such as malware detection).

When we were starting our work on this feature, we looked around at existing solutions in the market to understand how we could deliver something better. After working with both customers and our security partners, we realized we could offer added value by making our decrypted output easier to use.

Many of our security partners can either deploy their systems inline (traffic must pass through the security device, which can selectively drop packets) or out-of-band (the security device monitors a copy of the traffic and sends alerts on suspicious traffic). Their flexible ability to deploy in either topology means they’re built to handle fully stateful TCP connections, with full TCP handshake, sequence numbers, and checksums. In fact, many will flag an error if they see something that looks wrong. It turns out that many passive SSL solutions out there produce output that isn’t fully stateful and can flag errors or require disabling of certain checks.

What exactly does this mean? Well, a secure web connection starts with a 3-way TCP handshake (see this Wikipedia article for more details), typically on port 443, and both sides choose a random starting sequence (SEQ) number. This is followed by an additional TLS handshake that kicks off encryption for the application, exchanging encryption parameters. After the encryption is nailed up, the actual application starts and the client and server exchange application data.

When decrypting and forwarding the connection, some of the information from the original encrypted connection either doesn’t make sense or must be modified. Some information, of course, must be retained. For example, if the security device is expecting a full TCP connection, then it expects a full TCP handshake at the beginning of the connection – otherwise packets are just appearing out of nowhere, which is typically seen as a bad thing by security devices.

Next, in the original encrypted connection, there’s a TLS handshake that won’t make any sense at all if you’re reading a cleartext connection (note that ATIP does forward metadata about the original encryption, such as key length and cipher, in its NetFlow/IPFIX reporting). So when you forward the cleartext stream, the TLS handshake should be omitted. However, if you simply drop the TLS handshake packets from the stream, then the SEQ numbers (which keep count of transmitted packets from each side) must be adjusted to compensate for their omission. And every TCP packet includes a checksum that must also be recalculated around the new decrypted packet contents.

If you open up the decrypted output from ATIP, you can see all of this adjustment has taken place. Here’s a PCAP of an encrypted Netflix connection that has been decrypted by ATIP:

The Importance of State

You’ll see there are no out-of-sequence packets, and no indication of any dropped packets (from the TLS handshake) or invalid checksums. Also note that even though the encrypted connection was on port 443, this flow analysis shows a connection on port 80. Why? Because many analysis tools will expect encrypted traffic on port 443 and cleartext traffic on port 80. To make interoperability with these tools easier, ATIP lets you remap the cleartext output to the port of your choice (and a different output port for every encrypted input port). You might also note that Wireshark shows SEQ=0. That’s not the actual sequence number; Wireshark just displays a 0 for the first packet of any connection so you can use the displayed SEQ number to count packets.

The following ladder diagram might also help to make this clear:

The Importance of State

To make Ixia’s SSL decryption even more useful, we’ve also added a few other new features. In the 1.2.1 release, we added support for Diffie Helman keys (previously, we only supported RSA keys), as well as Elliptic Curve ciphers. We’ve also added reporting of key encryption metadata in our NetFlow/IPFIX reporting:

The Importance of State

As you can see, we’ve been busy working on our SSL solution, making sure we make it as useful, fast, and easy-to-use as possible. And there’s more great stuff on the way. So if you want to see new features, or want more information about our current products or features, just let us know and we’ll get on it.

More Information

ATI Processor Web Portal

Wikipedia Article: Transmission Control Protocol (TCP)

Wikipedia Article: Transport Layer Security (TLS)

Thanks to Ixia for the article.

Don’t Miss the Forest for the Trees: Taps vs. SPAN

These days, your network is as important to your business as any other item—including your products. Whether your customers are internal or external, you need a dependable and secure network that grows with your business. Without one, you are dead in the water.

IT managers have a nearly impossible job. They must understand, manage, and secure the network all the time against all problems. Anything less than a 100 percent working network is a failure. There is a very familiar saying: Don’t miss the forest for the trees. Meaning don’t let the details prevent you from seeing the big picture. But what if the details ARE the big picture?

Today’s IT managers can’t miss the forest OR the trees!

Don’t Miss the Forest for the Trees: Taps vs. SPAN

Network visibility is a prime tool in properly monitoring your network. You need an end-to-end visibility architecture to truly see your network. This visibility architecture must reveal both the big picture and the smallest details to present a true view of what is happening in the network.

The first building-block to your visibility architecture is access to the data. To efficiently monitor a network, you must have complete visibility into that network. This means being able to reliably capture 100% of the network traffic under all network conditions.

To achieve this, devices need to be installed into the network to capture that data using “taps” or Switch Port Analyzers (SPANs).

A tap is a passive splitting mechanism placed between two network devices. It provides a monitoring connection. Using taps, you can easily connect monitoring devices such as protocol analyzers, RMON probes and intrusion detection and prevention systems to the network. The tap duplicates all traffic on the link and forwards this to the monitoring device. Any monitoring device connected to a tap receives the same traffic as if it were in-line. This includes all errors. Taps do not introduce delay, or alter the content or structure of the data. They also fail open so that traffic continues to flow between network devices, even if you remove a monitoring device or power to the device is lost.

A SPAN port – also known as a mirroring port – is a function of one or more ports on a switch in the network. Like a tap, monitoring devices can also be attached to this SPAN port.

So what are the advantages of taps vs SPAN?

  • A tap captures everything on the wire, including MAC and media errors. A SPAN port will drop those packets.
  • A tap is unaffected by bandwidth saturation. A SPAN port cannot handle heavily used full-duplex links without dropping packets.
  • A tap is simple to install. A SPAN port requires an engineer to configure the switch or switches.
  • A tap is not an addressable network device. It cannot be hacked. SPAN ports leave you vulnerable.
  • A tap doesn’t require you to dedicate a switch port to monitoring. It frees the monitoring port up for switching traffic.

Don’t Miss the Forest for the Trees: Taps vs. SPAN

Thanks to Ixia for the article.

Ixia Taps into Visibility, Access and Security in 4G/LTE

The Growing Impact of Social Networking Trends on Lawful Interception

Ixia Taps into Visibility, Access and Security in 4G/LTELawful Interception (LI) is the legal process by which a communications network operator or Service Provider (SP) gives authorized officials access to the communications of individuals or organizations. With security threats mushrooming in new directions, LI is more than ever a priority and major focus of Law Enforcement Agencies (LEAs). Regulations such as the Communications Assistance for Law Enforcement Act (CALEA), mandate that SPs place their resources at the service of these agencies to support surveillance and interdiction of individuals or groups.

CALEA makes Lawful Interception a priority mission for Service Providers as well as LEA; its requirements make unique demands and mandate specific equipment to carry out its high-stakes activities. This paper explores requirements and new solutions for Service Provider networks in performing Lawful Interception.

A Fast-Changing Environment Opens New Doors to Terrorism and Crime

In the past, Lawful Interception was simpler and more straightforward because it was confined to traditional voice traffic. Even in the earlier days of the Internet, it was still possible to intercept a target’s communication data fairly easily.

Now, as electronic communications take on new forms and broaden to a potential audience of billions, data volumes are soaring, and the array of service offerings is growing apace. Lawful Interception Agencies and Service Providers are racing to thwart terrorists and other criminals who have the technological expertise and determination to carry out their agendas and evade capture. This challenge will only intensify with the rising momentum of change in communication patterns.

Traffic patterns have changed: In the past it was easier to identify peer-to-peer applications or chat using well known port numbers. In order to evade LI systems, the bad guys had to work harder. Nowadays, most applications use Ixia Taps into Visibility, Access and Security in 4G/LTE standard HTTP and in most cases SSL to communicate. This puts an extra burden on LI systems that must identify overall more targets on larger volumes of data with fewer filtering options.

Social Networking in particular is pushing usage to exponential levels, and today’s lawbreakers have a growing range of sophisticated, encrypted communication channels to exploit. With the stakes so much higher, Service Providers need robust, innovative resources that can contend with a widening field of threats. This interception technology must be able to collect volume traffic and handle data at unprecedented high speeds and with pinpoint security and reliability.

LI Strategies and Goals May Vary, but Requirements Remain Consistent

Today, some countries are using nationwide interception systems while others only dictate policies that providers need to follow. While regulations and requirements vary from country to country, organizations such as the European Telecommunications Standards Institute (ETSI) and the American National Standards Institute (ANSI) have developed technical parameters for LI to facilitate the work of LEAs. The main functions of any LI solution are to access Interception-Related Information (IRI) and Content of Communication (CC) from the telecommunications network and to deliver that information in a standardized format via the handover interface to one or more monitoring centers of law enforcement agencies.

High-performance switching capabilities, such as those offered by the Ixia Director™ family of solutions, should map to following LI standards in order to be effective: They must be able to isolate suspicious voice, video, or data streams for an interception, based on IP address, MAC address or other parameters. The device must also be able to carry out filtering at wire speed. Requirements for supporting Lawful Interception activities include:

  • The ability to intercept all applicable communications of a certain target without gaps in coverage, including dropped packets, where missing encrypted characters may render a message unreadable or incomplete
  • Total visibility into network traffic at any point in the communication stream
  • Adequate processing speed to match network bandwidth
  • Undetectability, unobtrusiveness, and lack of performance degradation (a red flag to criminals and terrorists on alert for signs that they have been intercepted)
  • Real-time monitoring capabilities, because time is of the essence in preventing a crime or attack and in gathering evidence
  • The ability to provide intercepted information to the authorities in the agreed-upon handoff format
  • Load sharing and balancing of traffic that is handed to the LI system .

From the perspective of the network operator or Service Provider, the primary obligations and requirements for developing and deploying a lawful interception solution include:

  • Cost-effectiveness
  • Minimal impact on network infrastructure
  • Compatibility and compliance
  • Support for future technologies
  • Reliability and security

Ixia’s Comprehensive Range of Solutions for Lawful Interception

This Ixia customer, (the “Service Provider”), is a 4G/LTE pioneer that relies on Ixia solutions. Ixia serves the LI architecture by providing the access part of an LI solution in the form of Taps and switches. These contribute functional flexibility and can be configured as needed in many settings. Both the Ixia Director solution family and the iLink Agg™ solution can aggregate a group of links in traffic and pick out conversations with the same IP address pair from any of the links.

Following are further examples of Ixia products that can form a vital element of a successful LI initiative:

Test access ports, or Taps, are devices used by carriers and others to meet the capability requirements of CALEA legislation. Ixia is a global leader in the range and capabilities of its Taps, which provide permanent, passive access points to the physical stream.

Ixia Taps reside in both carrier and enterprise infrastructures to perform network monitoring and to improve both network security and efficiency. These inline devices provide permanent, passive access points to the physical stream. The passive characteristic of Taps means that network data is not affected whether the Tap is powered or not. As part of an LI solution, Taps have proven more useful than Span ports. If Law Enforcement Agencies must reconfigure a switch to send the right conversations to the Span port every time intercept is required, a risk arises of misconfiguring the switch and connections. Also, Span ports drop packets—another significant monitoring risk, particularly in encryption.

Director xStream™ and iLink Agg xStream™ enable deployment of an intelligent, flexible and efficient monitoring access platform for 10G networks. Director xStream’s unique TapFlow™ filtering technology enables LI to focus on select traffic of interest for each tool based on protocols, IP addresses, ports, and VLANs. The robust engineering of Director xStream and iLink Agg xStream enables a pool of 10G and 1G tools to be deployed across a large number of 10G network links, with remote, centralized control of exactly which traffic streams are directed to each tool. Ixia xStream solutions enable law enforcement entities to view more traffic with fewer monitoring tools as well as relieving oversubscribed 10G monitoring tools. In addition, law enforcement entities can share tools and data access among groups without contention and centralize data monitoring in a network operations center.

Director Pro™ and Director xStream Pro data monitoring switches offers law enforcement the ability to perform better pre-filtering via Deep Packet Inspection (DPI) and to hone in on a specific phone number or credit card number. Those products differs from other platforms that might have the ability to seek data within portions of the packet thanks to a unique ability to filter content or perform pattern matching with hardware and in wire speed potentially to Layer 7. Such DPI provides the ability to apply filters to a packet or multiple packets at any location, regardless of packet length or how “deep” the packet is; or to the location of the data to be matched within this packet. A DPI system is totally independent of the packet.

Thanks to Ixia for the article.

Inline Security Solutions from Ixia

Flexible, Fail-Safe Inline Security Boosts Agility, Availability, and Resilience While Reducing Network Costs

As networks deliver more services and carry ever-higher volumes of multiprotocol traffic, data rates continue to soar. Voice, data, and streaming video now travel on one wire, raising security and compliance issues. Today’s intense threat landscape demands multiple proactive security systems throughout the network for a strong, layered security posture. These proactive devices include firewalls, next-gen firewalls, web-application firewalls, and Intrusion Prevention Systems (IPS)—and all require inline network deployment.

Multiple inline security resources can themselves actually become points of failure and vulnerability. They bring concerns about network uptime, performance, operational ownership, security flexibility and overall costs. Despite redundancy and other protections, they must be taken offline for upgrades and scheduled or unscheduled maintenance. Further, if a tool loses power or becomes overprovisioned, the network link can break and traffic cease to flow.

Now, Ixia’s Inline Security Framework offers a proven solution for deploying multiple inline security tools. This smart approach improves your network’s availability, agility, performance, and functionality, while providing greater security, flexibility, and resilience, and lowering overall costs and personnel workloads.

Ixia’s Inline Security Framework protects your network uptime with multiple resources: Bypass switch bi-directional heartbeat monitoring for system, link and power failures ensures uninterrupted network uptime while increasing network availability. Security tool load balancing ensures efficiency while enabling you to leverage existing tool investments and add capacity as needed, rather than investing in a forklift upgrade.

Replacing multiple inline security devices with a single passive bypass switch eliminates network maintenance downtime while providing a pay-as-you-go capacity upgrade path for your changing security needs—dramatically reducing costs of migrating your 1G tools to the 10G environment, for example.

Ixia Net Optics Bypass Switches offer proven, fail-safe Inline protection for your security and monitoring tools. A heartbeat packet protects the network link from application, link, and power failure: if a packet doesn’t return, the switch instantly goes into bypass mode and takes that appliance out of the traffic path. With support for 10Mbps to 40Gbps connectivity, you receive automated failover protection on full duplex traffic streams connected to the monitoring tools. Because the Bypass Switch is passive, link traffic continues to flow even if the Bypass itself loses power.

Packet Brokers reside behind the bypass switch to provide additional flexibility and control over traffic flow for inline security tools. These packet brokers provide advanced control of traffic as it traverses the security tools, including load balancing, traffic aggregation from multiple links, application filtering, and out-of-band access.

Ixia’s robust Inline Security Solutions give you the confidence of assured inline availability for improved business continuity and network health. Find out more about how our cost-effective inline approach extends the availability and security of your network.

Inline Security Solutions from Ixia

Related Products

 

Net Optics Bypass Switches

Net Optics Bypass Switches

Fail-safe deployments for inline security tools

Security Packet Brokers

Security Packet Brokers

Inline traffic aggregation, filtering, failover, and load balancing for security tools

Thanks to ixia for the article.